At the Association for Computing Machinery’s 43rd Symposium on Theory of Computing in June, associate professor of computer science Scott Aaronson and his graduate student Alex Arkhipov will present a paper describing an experiment that, if it worked, would offer strong evidence that quantum computers can do things that classical computers can’t. Although building the experimental apparatus would be difficult, it shouldn’t be as difficult as building a fully functional quantum computer.
If the experiment works, “it has the potential to take us past what I would like to call the 'quantum singularity,' where we do the first thing quantumly that we can’t do on a classical computer,” says Terry Rudolph, an advanced research fellow with Imperial College London’s Quantum Optics and Laser Science, who was not involved in the research.
Aaronson and Arkhipov's proposal is a variation on an experiment conducted by physicists at the University of Rochester in 1987, which relied on a device called a beam splitter, which takes an incoming beam of light and splits it into two beams traveling in different directions. The Rochester researchers demonstrated that if two identical light particles — photons — reach the beam splitter at exactly the same time, they will both go either right or left; they won’t take different paths. It’s another of the weird quantum behaviors of fundamental particles that defy our physical intuitions.
If the experiment works, “it has the potential to take us past what I would like to call the 'quantum singularity,' where we do the first thing quantumly that we can’t do on a classical computer,” says Terry Rudolph, an advanced research fellow with Imperial College London’s Quantum Optics and Laser Science, who was not involved in the research.
Aaronson and Arkhipov's proposal is a variation on an experiment conducted by physicists at the University of Rochester in 1987, which relied on a device called a beam splitter, which takes an incoming beam of light and splits it into two beams traveling in different directions. The Rochester researchers demonstrated that if two identical light particles — photons — reach the beam splitter at exactly the same time, they will both go either right or left; they won’t take different paths. It’s another of the weird quantum behaviors of fundamental particles that defy our physical intuitions.
~ more... ~
~ See also: Quantum Perspective On The Non-Existence Of Light ~
No comments:
Post a Comment